Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Liquid–liquid phase separation is emerging as the universal mechanism by which membraneless cellular granules form. Despite many previous studies on condensation of intrinsically disordered proteins and low complexity domains, we lack understanding about the role of RNA, which is the essential component of all ribonucleoprotein (RNP) granules. RNA, as an anionic polymer, is inherently an excellent platform for achieving multivalency and can accommodate many RNA binding proteins. Recent findings have highlighted the diverse function of RNA in tuning phase-separation propensity up or down, altering viscoelastic properties and thereby driving immiscibility between different condensates. In addition to contributing to the biophysical properties of droplets, RNA is a functionally critical constituent that defines the identity of cellular condensates and controls the temporal and spatial distribution of specific RNP granules. In this review, we summarize what we have learned so far about such roles of RNA in the context of in vitro and in vivo studies.more » « less
-
ABSTRACT The obligate human pathogen Neisseria gonorrhoeae alters its cell surface antigens to evade the immune system in a process known as antigenic variation (AV). During pilin AV, portions of the expressed pilin gene ( pilE ) are replaced with segments of silent pilin genes ( pilS ) through homologous recombination. The pilE-pilS exchange is initiated by formation of a parallel guanine quadruplex (G4) structure near the pilE gene, which recruits the homologous recombination machinery. The RecQ helicase, which has been proposed to aid AV by unwinding the pilE G4 structure, is an important component of this machinery. However, RecQ also promotes homologous recombination through G4-independent duplex DNA unwinding, leaving the relative importance of its G4 unwinding activity unclear. Previous investigations revealed a guanine-specific pocket (GSP) on the surface of RecQ that is required for G4, but not duplex, DNA unwinding. To determine whether RecQ-mediated G4 resolution is required for AV, N. gonorrhoeae strains that encode a RecQ GSP variant that cannot unwind G4 DNA were created. In contrast to the hypothesis that G4 unwinding by RecQ is important for AV, the RecQ GSP variant N. gonorrhoeae strains had normal AV levels. Analysis of a purified RecQ GSP variant confirmed that it retained duplex DNA unwinding activity but had lost its ability to unwind antiparallel G4 DNA. Interestingly, neither the GSP-deficient RecQ variant nor the wild-type RecQ could unwind the parallel pilE G4 nor the prototypical c- myc G4. Based on these results, we conclude that N. gonorrhoeae AV occurs independently of RecQ-mediated pilE G4 resolution. IMPORTANCE The pathogenic bacteria Neisseria gonorrhoeae avoids clearance by the immune system through antigenic variation (AV), the process by which immunogenic surface features of the bacteria are exchanged for novel variants. RecQ helicase is critical in AV and its role has been proposed to stem from its ability to unwind a DNA secondary structure known as a guanine quadruplex (G4) that is central to AV. In this work, we demonstrate that the role of RecQ in AV is independent of its ability to resolve G4s and that RecQ is incapable of unwinding the G4 in question. We propose a new model of RecQ’s role in AV where the G4 might recruit or orient RecQ to facilitate homologous recombination.more » « less
-
In hypoxic stress conditions, glycolysis enzymes assemble into singular cytoplasmic granules called glycolytic (G) bodies. G body formation in yeast correlates with increased glucose consumption and cell survival. However, the physical properties and organizing principles that define G body formation are unclear. We demonstrate that glycolysis enzymes are non-canonical RNA binding proteins, sharing many common mRNA substrates that are also integral constituents of G bodies. Targeting nonspecific endoribonucleases to G bodies reveals that RNA nucleates G body formation and maintains its structural integrity. Consistent with a phase separation mechanism of biogenesis, recruitment of glycolysis enzymes to G bodies relies on multivalent homotypic and heterotypic interactions. Furthermore, G bodies fuse in vivo and are largely insensitive to 1,6-hexanediol, consistent with a hydrogel-like composition. Taken together, our results elucidate the biophysical nature of G bodies and demonstrate that RNA nucleates phase separation of the glycolysis machinery in response to hypoxic stress.more » « less
-
null (Ed.)Single-molecule FRET (smFRET) has become a mainstream technique for studying biomolecular structural dynamics. The rapid and wide adoption of smFRET experiments by an ever-increasing number of groups has generated significant progress in sample preparation, measurement procedures, data analysis, algorithms and documentation. Several labs that employ smFRET approaches have joined forces to inform the smFRET community about streamlining how to perform experiments and analyze results for obtaining quantitative information on biomolecular structure and dynamics. The recent efforts include blind tests to assess the accuracy and the precision of smFRET experiments among different labs using various procedures. These multi-lab studies have led to the development of smFRET procedures and documentation, which are important when submitting entries into the archiving system for integrative structure models, PDB-Dev. This position paper describes the current ‘state of the art’ from different perspectives, points to unresolved methodological issues for quantitative structural studies, provides a set of ‘soft recommendations’ about which an emerging consensus exists, and lists openly available resources for newcomers and seasoned practitioners. To make further progress, we strongly encourage ‘open science’ practices.more » « less
An official website of the United States government
